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INTRODUCTION
The Ok Tedi copper and gold mine, operated by Ok Tedi 
Mining Limited (OTML), is located in the Star Mountains 
of the Western Province of Papua New Guinea. The mine has 
been operating since 1984. The mine currently discharges 
approximately 164 000 tonnes of waste rock and 82 000 
tonnes of tailings per day to the Ok Tedi (a large tributary of 
the Fly River), with mine-derived sediments being transported 
downstream to the Fly River. Median daily flow in the Fly 
River at Nukumba is 2100 m3s-1 and 2650 m3s-1 at Obo (see 
Figure 1 for locations). Based on the OTML mine plan at the 
time of this study, riverine disposal of materials will continue 
from now until closure in 2012.

Studies investigating the impacts of mine-derived materials 
in the Ok Tedi-Fly River system have raised concerns that 
acid rock drainage (ARD) and the associated liberation 
of increased concentrations of heavy metals, in particular 
copper, may cause additional environmental damage by 
increased toxicity (Rogers et al. 2005) and changes to aquatic 
food webs (Storey 2005). Geochemical studies (EGi 2005a) 
showed that mine waste, particularly the tailings, discharged 
to the Ok Tedi-Fly River system were increasingly prone to 
ARD production, due to higher sulphur and lower limestone 
contents in mine waste and tailings. The locations considered 
most at risk from ARD are the sand bars in the upper Ok Tedi, 
the Bige dredge stockpiles (Figure 1) and the lower Ok Tedi, 
and the mid Fly River where this material is being deposited 
on levees and the floodplain.
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ABSTRACT
The mining industry has a long legacy of causing major environmental impacts. Due to mounting pressure, regulations to 
moderate the negative effects of mining operations have been adopted by most developed countries. Consequently, the mining 
industry is faced with the difficult task of ensuring its activities do not cause unacceptable changes to the environment. 
Nonetheless, predicting changes in ecosystems due to environmental contaminants is often limited by the poor understanding 
of pollution pathways encompassing the mechanisms and interactions between physical, chemical and biological factors in 
dynamic ecosystems. Risk assessment and management is an approach that has been adopted by regulatory agencies and the 
mining industry to reduce environmental impacts. The approach is intended to provide practical and implementable solutions 
to managers, particularly by focussing on high priority risks. 

Bayesian network (BN) models are particularly useful tools in risk assessments for quantifying ecological effects and evaluating 
the effectiveness of management scenarios in situations where the cause-effect relationships are complex and poorly known. 
In this paper we discuss the potential for BNs to be used for modelling the ecological risks from mining activities to aquatic 
ecosystems. A BN model was developed to predict the effects of changes in water chemistry and loss of physical habitat on 
fish communities in the Ok Tedi and Fly River system (Papua New Guinea). The model was used to assess the impacts of 
future mine operation scenarios on fish biomass.
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Geochemical test work suggested that without mitigation of 
ARD, significant changes in water chemistry (particularly 
increased bioavailable metal concentrations) are predicted 
to occur in the future, with subsequent impacts on aquatic 
and terrestrial resources (EGi 2005b). Field surveys in 2005 
found examples of ARD production on bars in the upper Ok 
Tedi (Reach A, Figure 1), and on the levees of the Fly River 
(Reaches C and D, Figure 1). 

In order to assist decision-making regarding future mine 
operations, OTML decided to undertake an ecological risk 
assessment, with the aims:

•	 to assess the risks to environmental values in the Ok Tedi 
and Fly River system from ARD; and 

•	 to test the effectiveness in mitigating these risks by 
removing 85% of sulphur from the tailings before they 
are discharged to the river system.

A description of environmental values defined by OTML can 
be found in OTML (2005). The removal of 85% sulphur was 
only used as a test mitigation scenario. For a full description 
of mitigation options, see OTML (2006). 

The OTML study was undertaken in two phases. Phase 1 
focussed on formulating the problem and Phase 2 focussed 
on quantitatively assessing the risks to the environmental 
values using five Bayesian decision network (BN) models. 
This paper describes the risk assessment approach used in the 
study, introduces the risk analysis modelling tool Bayesian 
Networks, and briefly describes and demonstrates the use of 
a model for predicting the effect of the OTML operations 
on fish.
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ECOLOGICAL RISK ASSESSMENT
Risk is defined as the likelihood of an adverse event with 
specific consequences occurring within a defined timeframe 
(Suter 1993). Risk assessment is a tool that has been 
developed to facilitate informed decision-making by assessing 
risk, and the risk assessment process is based on quantifying 
the uncertainty of an undesirable event occurring either now 
or in the future (Suter 1993). The risk assessment process is 
iterative (Figure 2), where each iteration seeks to improve the 
understanding of system complexity and to reduce associated 
uncertainty.

Past approaches to risk assessments have predominantly 
focussed on single stressor (mostly chemical) problems 
and have not explicitly incorporated risk management 
actions. Current risk assessment approaches enable better 
quantification of the effects of multiple stressors on multiple 
endpoints and enable testing of the effectiveness of risk 
management strategies. By integrating information on 
exposures over time, pathways, sources, and/or routes for 
a number of stressors, decisions in risk management can be 
better informed. Such approaches allow for a more complete 
view of a system, enabling a more holistic view to decision-
making (Pollino and Hart 2008).

Uncertainties and Risk Management
Ecological Risk Assessments (ERAs) facilitate a more 
formalised approach to risk management. A robust ERA 
should consider the complexity and associated uncertainties 
within inherently variable ecosystems, and our lack of 
knowledge of ecosystems. Acknowledging and incorporating 
complexity and uncertainty in an ERA can reduce ambiguity 
and encourage a more transparent process in decision-making, 
identify realistic strategies for management and promote 
adaptive management, decision-making and modelling 
processes (Pollino et al. 2007a). Accordingly, when analysing 
risk, communication of uncertainties is essential.

In a risk assessment, the major sources of uncertainties 
that need consideration are: lack of knowledge of complex 
systems; the inherent variability or stochasticity associated 
with ecological systems; and the error in representing 
complex systems, particularly in risk analysis models. 
While uncertainties associated with lack of knowledge and 
model error can be addressed iteratively by targeted research 
and monitoring and data analysis, inherent variability or 
stochasticity is irreducible and something we should seek to 
capture in risk analysis models. 

Ideally, risk analysis models should promote a framework 
for iterative updating, with models being updated in an 
adaptive framework as new knowledge and data become 
available (Pollino et al. 2007a). Such models also need to 
communicate natural variability, particularly when models 
and their predictions are applied over broad ecological scales. 
Such predictions are intrinsically linked with changeability, 
particularly as the longer the timescale and the more 
dynamic an ecosystem, the greater the uncertainty will be in 
predictions. Both the reducible and unreducible uncertainties 
need to be communicated to environmental managers and 

decision-makers to provide an understanding of the risks 
associated with management options. 

Risk analysis models also need to have direct applicability in 
risk management, providing recommendations on managing 
or mitigating high or unacceptable risks, a robust program 
to monitor progress to ensure the strategies are working, 
and a review and feedback process for making changes if 
needed. To be effective, this risk management plan needs 
to be supported by peer-reviewed science that underpins an 
evidence base for a specific course of risk management action 
(Pollard et al. 2008). 

We have found that Bayesian Networks (BNs) are of value for 
the risk analysis, and can be used more broadly to facilitate 
the risk assessment and management processes (Pollino 
and Hart 2008). BNs are particularly useful in assisting risk 
management decisions, where considerable uncertainties 
exist, and for fulfilling the adaptive or iterative aspects of a 
risk assessment (Hart and Pollino 2008; Pollino et al. 2007a; 
Pollino et al. 2007b).

BAYESIAN NETWORKS
BNs are a form of Bayesian statistical inference in which 
evidence or observations are used to update or to newly 
infer the probability that a hypothesis may be true. The 
name “Bayesian” comes from the use of Bayes’ theorem (see 
Equation 1) in the inference process. Bayes’ theorem was 
first derived by the Reverend Thomas Bayes (1702 – 1761) 
(www.wikipedia.com).

BNs are widely being used as model-based decision support 
tools, modelling situations where there is considerable 
uncertainty. Recently, there has been much activity in using 
the BN modelling framework to develop decision support 
tools to aid in the management of ecological systems. 
Unlike many other models for decision support, BNs offer a 
pragmatic and scientifically credible approach to modelling 
complex ecological systems. BNs can integrate quantitative 
and qualitative forms of knowledge, with uncertainties being 
represented as probability distributions. 

BN models explicitly link environmental processes and 
ecological outcomes with environmental management 
actions. They provide a framework to assemble masses of 
information, to better understand systems and processes, 
test hypotheses, and evaluate the effectiveness of alternative 
management policies. They are particularly useful for tying 
together different bodies of data, aiding in the identification of 
salient, necessary and sufficient features of a system (Hilborn 
and Mangel 1997).

Modelling of ecological processes using BNs is particularly 
useful since these models use Bayesian inference to update 
the scientific knowledge as new information is made available 
(Reckhow 2002). This type of iterative improvement of 
models improves the representation of the system in the 
model and fits into the ecological risk assessment paradigm 
and adaptive management frameworks (Pollino et al. 2007a). 
BNs can also be extended for risk management planning and 
decision-making, where other non-scientific factors (e.g. 
cultural, economic) can be included in models (Pollino and 
Hart 2008).
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Figure 1. The Ok Tedi and Fly River showing reaches A to F.
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How do they work?
BNs are graphical models made up of a collection of 
nodes, each with mutually exclusive states, which represent 
important environmental variables. Arrows (arcs) represent 
causal dependencies between nodes. A probability distribution 
is used to describe the relative likelihood of the state of each 
variable, conditional on every possible combination of 
parent (up arrow) variables. If a node has no parents, it can 
be described probabilistically by a marginal (unconditional) 
probability distribution (Pearl 1988). 

A prior (unconditional) probability represents the likelihood 
that an input parameter will be in a particular state; the 
conditional probability calculates the likelihood of the state of 
a parameter given the states of input parameters affecting it, 
and the posterior probability is the likelihood that a parameter 
will be in a particular state, given the input parameters, the 
conditional probabilities, and the rules governing how the 
probabilities combine. The network is solved when nodes 
have been updated using Bayes’ Theorem:

P(A B) = P(B A) P(A)
P(B)

(Equation 1)

where P(A) is the prior distribution of parameter A. After 
collection of data B, P(A|B) represents the posterior (new) 
distribution of A given the new knowledge (B). P(B|A) is the 
likelihood function that links A and B.

The modelling shell Netica (www.norsys.com) was used to 
construct OTML Bayesian networks. For a full description 
of BNs, see Korb and Nicholson (2004) and Pearl (1988).
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Figure 2. Risk assessment and management framework 
(Hart et al. 2005a).

DESCRIPTION OF OTML FISH BN
Information about the OTML models is available in the 
reports by Pollino and Hart (2005, 2006). Further information 
about constructing BN models is available elsewhere (Pollino 
et al. 2007b). 

In this paper, a subset of one BN (the fish model) is introduced, 
where the endpoint used is the availability of fish (measured 
as biomass in kg). 

Model scales
Spatial scale: The Ok Tedi and Fly River system was divided 
into six reaches (Reaches A to F) representing different 
vegetative, geomorphic and ecological types (Figure 1). Two 
reaches where no mining activity occurs were also included 
in this study as a means of testing model behaviour (Pollino 
and Hart 2005). Only results for Reach C (Figure 1) are 
shown in this paper. 

Temporal scale: The temporal periods considered in the 
BN are:

Mine operating period
 Pre-dredge   1983 – 1998
 Dredge    1998 – 2005
 Now to end of mine life 2005 – 2012

Post-mine    2012 – 2025
     2025 – 2045
     2045 – 2060

Changes in mining operations, and how this altered water 
chemistry and channel aggradation behaviour, were 
considered as part of this assessment.

Climate: Different climatic conditions (El Niño and ‘Normal’) 
for model simulations can be selected. These conditions are 
assumed to span the entire time period selected. The results in 
this report are based on the ‘Normal’ climate scenarios, with 
a distribution of low (25th percentile), median (50th percentile) 
and high (75th percentile) flows. It is important to note that 
flow conditions are different at each of the river reaches. 

Structure of the Bayesian network 
The model causal structure was based on a conceptual 
model developed in Phase 1 of the ERA (conceptual model 
not shown here, reported in Hart et al. (2005b). As shown 
in the schematic (Figure 3), variables were organised into a 
series of interacting sub-models that integrate into a single 
framework. Two major riverine processes are examined in 
the system: water chemistry and sediment processes. These 
are both relevant to OTML operations. Water chemistry is 
influenced by ARD processes (ARD and no ARD scenarios 
can be tested). Channel aggradation is influenced by sediment 
transport. The outcomes of sub-models are integrated into 
endpoint variables, described below. Activities at the mine 
and their subsequent influence on system processes and model 
endpoints are the focus of management activities in models. 
The full model is shown in Figure 4. 

In many commercial BN packages, such as Netica (Norsys 
2005), continuous distributions must be approximated by 
discrete equivalents (referred to as states). The number of 
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states for each variable were assigned on an individual basis, 
and where possible, recognised classifications or thresholds 
were used. The remaining nodes were discretised based on 
expert opinion or using the literature as guidance. For a full 
description of the models see Pollino and Hart (2006).

Model Endpoints
Four endpoints can be investigated in the fish model (Figure 
4). These are (1) Suitable fish habitat, (2) Exceedance of 
toxicity thresholds, (3) Contamination/Edibility, and (4) 
Change in biomass/Resource availability. Endpoints 1 and 
2 are also parent nodes of endpoints 3 and 4. For endpoints 
2, 3 and 4 outcomes can be assessed for important species, 
important species groupings or total fish biomass. The results 
for endpoint 4 only are shown in this paper. Results will 
only be shown for total fish biomass. The total fish biomass 
endpoint is discretised according to percentiles (0 to 50, 
50 to 75, 75 to 90, 90 to 95, 95 to 99 and 99 to 100) in the  
Fly River. 

Source data
Surface Water Chemistry Processes
ARD processes were modelled using the OkARD model 
(Miller et al. 2003). OkARD predicts percentage sulphur, acid 
neutralising capacity (ANC), net acid production potential 
(NAPP) and acid loads from now to 2060. The OkARD model 
takes into account the current mine plan and expected changes 
in mine waste geochemistry through time. 

Water chemistry changes were modelled using the OkChem 
model (EGi 2005b). OkChem is a derivative of PHREEQc 
(USGS 2005), and is regarded as a companion to the OkARD 
model. OkChem uses acidity outputs calculated by OkARD 
to predict possible changes in river water quality associated 
with mining, processing and waste management operations 
by OTML. 

In addition to the modelled water chemistry data, data from 
the OTML water quality monitoring program was also used 
in the BN model.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic of the OTML fish model.

Erosion / Deposition Processes
HEC-6, a sediment transport model, has been used to model 
erosion and depositional rates in the Middle Fly River 
(Pickup 2003; Pickup and Cui 2003). These data were used 
to calculate predictions of channel aggradation. In addition 
to modelled data, field channel aggradation data from routine 
monitoring in parts of the Fly River was also used in the BN 
model (Marshall 2002).

Fish Data
Routine monitoring of fish biomass has taken place along 
the length of the Ok Tedi and Fly River since 1983. OTML 
fish datasets assembled by Storey (2004) were used in  
this study. 

Model Parameterisation
To define continuous probability tables for a node, the model 
needs to be parameterised (see Pollino et al. 2007b for details). 
The majority of model relationships were parameterised 
(trained) using data. This was done by fitting a network to a 
set of observed cases (Henrion et al. 1996). A library of cases 
(called a case file) was generated using described data sources. 
A single case is composed of a set of findings/observations, 
which are entered into the BN for case-based learning (i.e. 
calibrating/training the BN). 

The learning algorithm used for model parameterisation 
was the expectation maximisation (EM) algorithm. An 
expectation-maximisation (EM) algorithm is used to find the 
maximum likelihood estimates of parameters in probabilistic 
models, where the model depends on unobserved latent 
variables (http://en.wikipedia.org/); accessed 20 January 
2009). EM alternates between performing an expectation 
(E) step, which computes an expectation of the likelihood 
by including the latent variables as if they were observed, 
and a maximisation (M) step, which computes the maximum 
likelihood estimates of the parameters by maximising the 
expected likelihood found on the E step. The parameters 
found on the M step are then used to begin another E step, 
and the process is repeated. As implemented in Netica (Norsys 
2005), the EM algorithm solves a network by finding the 
posterior probability for each node based on information in 
the cases, where initial parameters are iteratively refitted to the 
data updated model until convergence is achieved (Kalacska 
et al. 2005). Where no information was available, probabilities 
were equally distributed, representing an unbiased parameter 
estimate (Pollino et al. 2007b). 

Model parameterisation and evaluation were done using a 
random 80% / 20% split of the dataset. For fish biomass 
measures, 20 664 cases (observations) were assembled from 
the OTML monitoring data. Of these, 16 532 cases (80%) 
were selected at random and used for model parameterisation. 
The remaining 4133 cases (20%) were used to test the 
predictive accuracy of the model (see Model evaluation). 

Model Evaluation
Sensitivity analysis (sensitivity to findings only) and 
predictive accuracy tests were conducted on the fish model. 
Using the 4133 cases isolated for model testing, the predictive 
accuracy of the model (biomass only) was found to be 70% 
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(Pollino and Hart 2005). This outcome demonstrates that 
the model is a fair representation of the system. The greatest 
error in model predictions occurred in the higher biomass 
categories. 

Predictive accuracy of the model could be further improved 
by targeting expert elicitation at defining optimal conditions 
for fish communities in the Ok Tedi and Fly River. Further 
information on outcomes of model evaluation is available in 

(Pollino and Hart 2006) and will be presented in a forthcoming 
paper. Sensitivity results are discussed below.

Model Limitations
Full details on model limitations can be found elsewhere 
(Pollino and Hart 2005). 

The key model limitations were:
•	 Continuous distributions must be represented as intervals 

(i.e. discretised), which can lead to information loss, 
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limiting the accuracy and representation of parameters 
(e.g. water quality measures) (Barton et al. 2008). 

•	 Potential impacts due to climate change are not considered 
in the model. Given that the model has projections through 
to 2060, change in weather patterns could influence ARD 
potential in the system, by changing river flow patterns.

•	 Data collected at fine scales were used to draw inferences 
about processes occurring over much broader spatial scales. 
Consequently, it is assumed that processes occurring at a 
fine scale are transferable to processes occurring at a  
broad scale.

•	 The Bayesian networks are specific to riverine processes 
and habitat processes (as defined in original project scope). 
Off-river water bodies (ORWBs) are important habitats for 
aquatic species. With less dilution potential of ARD and 
associated bioavailable metals in ORWBs and the potential 
loss of connectivity with ORWBs due to in-filling of tie 
channels, aquatic communities could be at risk.

ASSESSMENT OF ALTERNATIVE MINE 
OPERATION SCENARIOS 
The BN was used to investigate a series of mine operation 
scenarios. For the purposes of this paper, only the outcomes 
of two mine operation scenarios are shown. These are:

•	 Null scenario: No removal of sulphur from mill tailings,
•	 Mitigation scenario: Removal of 85% sulphur from mill 

tailings (at the mine site).

The mitigation scenario is theoretical only. For a full outline 
of mitigation scenarios tested for OTML, refer to Pollino and 
Hart (2006). The full range of scenarios considered by OTML 
is not considered in this paper.

Probability distributions of total fish biomass (in kilograms) 
under these two scenarios are graphed in Figure 5. Eight time 
periods (between 1983 and 2060) are shown (see temporal 
periods above). The cut-offs for the ranges of total fish 
biomass graphs were determined using percentiles (see Model 
endpoints description above). 

All fish biomass predictions account for loss of fish due to 
toxicity of copper (Cu) and loss of fish habitat due to channel 
aggradation. When interpreting the results in Figure 5, it 
is important to note that they are probability distributions, 
accommodating uncertainty due to model error, lack of 
knowledge and natural variability. 

Predictions using OTML fish data show that a loss of fish 
biomass has occurred at a number of river reaches between 
1983 and 2005. A decline in total biomass was observed 
between early mine life (1983 to 1989), and the latter 
monitoring periods (1989 to 1995, 1995 to 1998 and 1998 
to 2005). In early mine life, the dominant biomass was the 
44 to 101 kg category, but this declined to the 12 to 44 kg 
category in the latter years. This is supported by other research 
(Storey 2004).

With the mitigation scenario, predictions with the OTML fish 
model suggest that the 12 to 44 kg category will continue 
to dominate fish biomass in Reach C (Figure 5). Where no 
mitigation of tailings takes place, the 0 to 12 kg category 

of biomass is more prevalent in the distribution for 2012 
to 2025 and 2025 to 2045 time periods. These declines in 
biomass could be manifested as a fish kill, as indicated by 
the toxicity exceedance endpoint (results shown in Pollino 
and Hart 2005).

Using sensitivity analysis, the ranking of parent variables 
in importance to the endpoint (which is an indicator of 
the importance of variables in predicting the endpoint), 
changed according to mine operation scenario, climate 
type, river reach and temporal period. Trends in sensitivity 
show that since mine operation, the dominant influence on 
fish abundances was driven by physical habitat, via channel 
aggradation. Predictions beyond 2012 show the increased 
importance of surface water metal concentrations influencing 
fish communities, particularly in El Niño dominated climate 
patterns. This changing importance of processes reflects the 
ARD-related processes occurring in the Fly River. 

ROLE OF BNS IN MINING-RELATED ERAS
Mining has a dramatic impact on a landscape, invariably 
causing environmental damage. Pressure from the public and 
government have resulted in greater controls being placed on 
minimising mining impacts on environmental values. The 
decision-makers who are charged with these responsibilities 
often need to draw on quite disparate information, where the 
relationships between decisions on managing mine activities 
and the resultant impact on environmental values are poorly 
linked. This is despite both extensive research and monitoring 
on various aspects of a mine’s operations and investigations 
of mine impacts. 

A key strength of the BN approach introduced in this 
paper is the ability to link mining operation scenarios with 
environmental processes that describe chemical and physical 
changes in the Ok Tedi and Fly River, and in turn integrate 
these outcomes with readily measurable and observable 
environmental values. Management scenarios or system 
changes were investigated, model predictions being described 
as likelihoods, and therefore were directly applicable to risk 
management. Overall, the project drew together disparate 
datasets and models, and opened a dialogue between experts 
in each field to holistically examine how decisions regarding 
mine operations can impact on environmental values. The 
outcome of the ERA is a series of models that can be used 
to inform decision-making where considerable uncertainties 
exist, advise on impacts of alternative mine operating 
scenarios, advise on key gaps in knowledge and data, and be 
updated to improve the robustness of models and subsequent 
decision-making. 

Using the results of the final model scenarios report (Pollino & 
Hart 2006) and other studies, OTML commissioned and built 
a sulfide recovery plant at the mine site aimed at removing 
most (approximately 99%) of the sulfide from the tailings 
stream. This material is piped down to secure storage dams 
at the Bige dredge site. The cost of the project was estimated 
to be $US 212 million. 
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Figure 5. Predictions of fish biomass (Null and mitigation scenarios) using the OTML fish BN.
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